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Supervised and Unsupervised Learning

* Algorithm learns from a fixed data set
* Supervised: Data includes labels
* Unsupervised: Data does not include labels

* Semi-Supervised Learning: Some data includes labels
* Use unlabeled data to learn a representation (e.g., features)
* Use labeled data to train a model using the learned representation
* Not discussed further in this class



Reinforcement Learning

* There is no fixed data set.

* The decisions (predictions) made by the agent change the data
the agent receives!

* Modeled as an agent interacting with an environment

Reinforcement learning is an area of machine learning, inspired by
behaviorist psychology, concerned with how an agent can learn
/ from interactions with an environment

— Wikipedia / Sutton&Barto / Phil

How rewards and punishments
shape our behavior.
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* The agent interacts with the environment over time t € {0,1, ... }.

* At each time the agent observes the state of the environment
* For now, we assume that it observes the full state of the environment.

* Thisis called the fully observable setting.

action

* In general, the agent miﬁht only make a partial (noisy) observation about the state of

the environment through its sensors.
* Thisis called the partially observable setting.

* Based on its observation of the state, the agent selects an action.
 The “parametric model” in RL is the mechanism in the agent that takes a state as input

and produces an action as output.
 This mechanism is called a policy.

* Worse, in RL, model means something completely different! (A model of the environment)

* |t can be deterministic (always producing the same action given a state) or stochastic

(producing a distribution over actions given the state).
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* The agent interacts with the environment overtimet € {0,1, ... }.
* At each time the agent observes the state of the environment

* Based on its observation of the state, the agent selects an action.
* The policy is the mechanism that determines the action given the state.

* The action causes the state of the environment to change.
* Thisis called a state transition.

* When the state transitions, the environment also emits a scalar reward.
* Intuitively, this reward indicates how “good” the current state is in the short term.
« Sometimes itis called the immediate reward to emphasize the short-term nature of its evaluation.

* The sequence of agent-environment interactions can end, and the process restarts.
* Each sequence of agent-environment interactions starting from time O is called an episode
* Thisisthe episodic setting. If the sequence of interactions never ends, it is called the continuing setting.

* The agent’s goal is to find a policy that maximizes the total amount of reward that it receives.
* Thereturnis the sum of rewards that the agent receives during one episode.

* The same policy can produce different returns during different episodes due to stochasticity in the state
transitions, rewards, and policy.

* The agent’s goal is to maximize the expected return.
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* The agent interacts with the environment over time t € {0,1, ... }.
* At each time the agent observes the state of the environment

* Based on its observation of the state, the agent selects an action.
* The policy is the mechanism that determines the action given the state.

* The action causes a state transition.
* When the state transitions, the environment also emits a scalar reward.

* Each sequences of agent-environment interactions starting from time 0 is
called an episode. Episodes can end (terminate).

* The return is the sum of rewards that the agent receives during one episode.
* The agent’s goal is to maximize the expected return.
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 Evaluative feedback, not instructive feedback

a

* Instructive feedback tells an agent what the correct decisions would have been

* Labels in supervised learning provide instructive feedback.
* Evaluative feedback tells an agent how good its decisions were
 Rewards in RL provide evaluative feedback.
* Evaluative feedback can be noisy (random)
* The range of possible feedback values may not be known.

* Isareward of +10 good or bad? The agent must interact with the environment to figure this

out!

 Sequential

* The agent’s goal is to maximize the expected return (expected sum of rewards).
* This can require it to forgo larger short-term rewards to obtain larger rewards in

the future.
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* Agent: Child
e Environment: World

* Goal: The child may learn to grasp an object or get a parent’s
attention

* State: The state of the world around the child (partially observed!)
 Action: Decision of how much to activate each muscle

* Reward: Positive when an object is picked up, negative when an
object is dropped, positive when a parent responds, etc.
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RL Examples

* Agent: Dog
e Environment: World
e Goal: Learn to fetch or catch

Agent

state

reward

Environment |«
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RL Examples

* Agent: Dog
e Environment: World
e Goal: Learn to fetch or catch

* State: The state of the world around the dog (partially observed!)

Agent

state

reward

Environment |«

e Action: Decision of how much to activate each muscle

e Reward: Positive when food is obtained

* Note: Each catching attempt can be viewed as an episode.

action



RL Examples

* Agent: Robot
* Environment: Lab
* Goal: Lift a heavy object

Agent

state

reward

Environment |«
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The learned policy exploits the container dynamics.



RL Examples state

Agent

reward

Environment |«

* Agent: Robot
* Environment: Lab
 Goal: Lift a heavy object

* State: State of the robot. Observation: Sensor readings for joint angles

and angular velocities.
* Action: How much power to give to each motor

* Reward: Positive when the jug is successfully lifted above the robot’s

head

* Note: The above is a simplification. The policy search was done over

target trajectories for the arm, using a low-level controller
those positions.

* Note: Each lifting attemptis an episode.

to achieve

action



Functional Electrical Stimulation (FES
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Elevator Scheduling
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Loon Balloon
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Example Applications: Diabetes Treatment
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Type 1 Diabetes Treatment
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Example Applications: Diabetes Treatment
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Fig.1: Drone racing.

a Drone racing: human versus autonomous
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a, Swift (blue) races head-to-head against Alex Vanover, the 2019 Drone Racing League world

champion (red). The track comprises seven square gates that must be passed in order in each lap. To
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Sepsis Treatment

$ Sepsis arises when the body’s response to an infection injures its

Seps lS own tissues and organs. It may lead to shock, multi-organ failure,
and death - especially if not recognized early and treated promptly.

Sepsis is the final common pathway to death from most infectious
diseases worldwide, including viruses such as SARS-CoV-2.
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Warehouse Robotics
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Note

* Despite the many proposed and simulated examples of important
RL problems, there are extremely few examples of RL agents
actually learning and interacting with real environments in useful
ways.

* There are examples of RL agents learning in simulation, and the learned
policies being useful (e.g., Loon balloons).

* In recent years RL has been used for fine-tuning LLMs based on
human feedback

* E.g., Reinforcement Learning from Humal Feedback (RLHF)

* Why so few applications of RL?
* RLis challenging to get working, as we will see!
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